https://www.cnblogs.com/ybjourney/p/4702562.html

机器学习实战之kNN算法

     机器学习实战这本书是基于python的,如果我们想要完成python开发,那么python的开发环境必不可少:

(1)python3.52,64位,这是我用的python版本

(2)numpy 1.11.3,64位,这是python的科学计算包,是python的一个矩阵类型,包含数组和矩阵,提供了大量的矩阵处理函数,使运算更加容易,执行更加迅速。

(3)matplotlib 1.5.3,64位,在下载该工具时,一定要对应好python的版本,处理器版本,matplotlib可以认为是python的一个可视化工具

好了,如果你已经完成了上述的环境配置,下面就可以开始完成真正的算法实战了。

一,k近邻算法的工作原理:

存在一个样本数据集,也称作训练数据集,并且样本集中每个数据都存在标签,即我们知道样本集中每个数据与所属分类的对应关系。当输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似的数据的分类标签。一般来水,我们只选择样本数据集中最相似的k个数据(通常k不大于20),再根据多数表决原则,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

k近邻算法的一般流程:
(1)收集数据:可以采用公开的数据源

(2)准备数据:计算距离所需要的数值

(3)分析数据:剔除垃圾信息

(4)测试算法:计算错误率

(5)使用算法:运用在实际中,对实际情况进行预测
Continue reading

TextRank 自动文摘
前不久做了有关自动文摘的学习,采用方法是TextRank算法,整理和大家分享。

一. 关于自动文摘

利用计算机将大量的文本进行处理,产生简洁、精炼内容的过程就是文本摘要,人们可通过阅读摘要来把握文本主要内容,这不仅大大节省时间,更提高阅读效率。但人工摘要耗时又耗力,已不能满足日益增长的信息需求,因此借助计算机进行文本处理的自动文摘应运而生。近年来,自动文摘、信息检索、信息过滤、机器识别、等研究已成为了人们关注的热点。

自动文摘(Automatic Summarization)的方法主要有两种:Extraction和Abstraction。其中Extraction是抽取式自动文摘方法,通过提取文档中已存在的关键词,句子形成摘要;Abstraction是生成式自动文摘方法,通过建立抽象的语意表示,使用自然语言生成技术,形成摘要。由于生成式自动摘要方法需要复杂的自然语言理解和生成技术支持,应用领域受限。所以本人学习的也是抽取式的自动文摘方法。

目前主要方法有:

基于统计:统计词频,位置等信息,计算句子权值,再简选取权值高的句子作为文摘,特点:简单易用,但对词句的使用大多仅停留在表面信息。
基于图模型:构建拓扑结构图,对词句进行排序。例如,TextRank/LexRank
基于潜在语义:使用主题模型,挖掘词句隐藏信息。例如,采用LDA,HMM
基于整数规划:将文摘问题转为整数线性规划,求全局最优解。(~.~我也不懂)
Continue reading