排序算法:
1.插入排序—直接插入排序(Straight Insertion Sort)

void print(int a[], int n ,int i){  
    cout<<i <<":";  
    for(int j= 0; j<8; j++){  
        cout<<a[j] <<" ";  
    }  
    cout<<endl;  
}  
  
  
void InsertSort(int a[], int n)  
{  
    for(int i= 1; i<n; i++){  
        if(a[i] < a[i-1]){               //若第i个元素大于i-1元素,直接插入。小于的话,移动有序表后插入  
            int j= i-1;   
            int x = a[i];        //复制为哨兵,即存储待排序元素  
            a[i] = a[i-1];           //先后移一个元素  
            while(x < a[j]){  //查找在有序表的插入位置  
                a[j+1] = a[j];  
                j--;         //元素后移  
            }  
            a[j+1] = x;      //插入到正确位置  
        }  
        print(a,n,i);           //打印每趟排序的结果  
    }  
      
}  
  
int main(){  
    int a[8] = {3,1,5,7,2,4,9,6};  
    InsertSort(a,8);  
    print(a,8,8);  
}

 

2. 插入排序—希尔排序(Shell`s Sort)

3. 选择排序—简单选择排序(Simple Selection Sort)

void print(int a[], int n ,int i){  
    cout<<"第"<<i+1 <<"趟 : ";  
    for(int j= 0; j<8; j++){  
        cout<<a[j] <<"  ";  
    }  
    cout<<endl;  
}  
/** 
 * 数组的最小值 
 * 
 * @return int 数组的键值 
 */  
int SelectMinKey(int a[], int n, int i)  
{  
    int k = i;  
    for(int j=i+1 ;j< n; ++j) {  
        if(a[k] > a[j]) k = j;  
    }  
    return k;  
}  
  
/** 
 * 选择排序 
 * 
 */  
void selectSort(int a[], int n){  
    int key, tmp;  
    for(int i = 0; i< n; ++i) {  
        key = SelectMinKey(a, n,i);           //选择最小的元素  
        if(key != i){  
            tmp = a[i];  a[i] = a[key]; a[key] = tmp; //最小元素与第i位置元素互换  
        }  
        print(a,  n , i);  
    }  
}  
int main(){  
    int a[8] = {3,1,5,7,2,4,9,6};  
    cout<<"初始值:";  
    for(int j= 0; j<8; j++){  
        cout<<a[j] <<"  ";  
    }  
    cout<<endl<<endl;  
    selectSort(a, 8);  
    print(a,8,8);  
}

 

4. 选择排序—堆排序(Heap Sort)

5. 交换排序—冒泡排序(Bubble Sort)

6. 交换排序—快速排序(Quick Sort)

7. 归并排序(Merge Sort)

8. 桶排序/基数排序(Radix Sort)
Continue reading

矩阵

选取上下文
最常见的有三种方法:

第一种,将词所在的文档作为上 下文,形成“词-文档”矩阵 [56]

第二种,将词附近上下文中的各个词(如上 下文窗口中的 5 个词)作为上下文,形成“词-词”矩阵 [70, 90];

第三种,将 词附近上下文各词组成的 n 元词组(n-gram)作为上下文

Skip-gram

NLP 在情感分析上的研究:

博文1:本文重点对电影推文进行情感分析(https://www.analyticsvidhya.com/blog/2016/02/step-step-guide-building-sentiment-analysis-model-graphlab/)

博文2:本文重点对印度金奈洪水期间的推文进行情感分析。(https://www.analyticsvidhya.com/blog/2017/01/sentiment-analysis-of-twitter-posts-on-chennai-floods-using-python/)

论文1:本文采用朴素贝叶斯的监督学习方法对IMDB评论进行分类。(https://arxiv.org/pdf/1305.6143.pdf)

论文2:本文利用LDA的无监督学习方法来识别用户生成评论的观点和情感。本文在解决注释评论短缺的问题上表现突出。(http://www.cs.cmu.edu/~yohanj/research/papers/WSDM11.pdf)

资料库:这是一个很好的包含相关研究论文和各种语言情感分析程序实现的资料库。(https://github.com/xiamx/awesome-sentiment-analysis)

数据集1:多域情感数据集版本2.0(http://www.cs.jhu.edu/~mdredze/datasets/sentiment/)

数据集2:Twitter情感分析数据集(http://www.sananalytics.com/lab/twitter-sentiment/)

竞赛:一个非常好的比赛,你可以检查你的模型在烂番茄电影评论的情感分析任务中的表现。(https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews)